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Abstract - A general vision of battery capacity prediction 
as a function of multiple non-invasive measurements is 
presented.  The importance of quantifying the uncertainty of 
such predictions is underscored.  A Valve-Regulated Lead 
Acid (VRLA) cell group is chosen to develop and examine a 
detailed functional relationship of capacity with conductance; 
particular emphasis is placed on the range of 75-105% 
battery capacity.  It is hoped that consolidation of the vast 
studies conducted throughout the industry will one day lead 
to a robust battery state of health prediction model with 
reasonable confidence limits. 
 

I. BACKGROUND & MOTIVATION 
 

Over the last decade, a multitude of significant 
studies, on a combined population of over 750,000 units, 
have examined VRLA batteries in operation and 
established that original 10-20 year  product life claims 
were not realistic.  The results indicate that actual service 
life tends to be in the range of 4-8 years on 20 Year Class 
VRLA products.  Overall, similar results were obtained for 
various manufacturers, different discharge rates, Absorbed 
Glass Mat (AGM) cells, Gel cells, pre-1994 products, and 
post-1994 products.  The newer AGM, and particularly 
Gel, cells on the higher end of the service life range.  Also 
demonstrated in some studies was that capacity begins to 
decline after as few as 2 years in service for a large enough 
portion of the product to warrant concern 
[1][2][3][4][5][15][16]. 
 

In response to shorter than expected service life for 
VRLA products, the community of users employing the 
technology immediately turned to methods to estimate the 
actual state of health at a given point in time.  The prospect 
of incurring another round of significant purchase and 

deployment costs for battery protection much earlier than 
expected left many trapped in a compromise of budgets 
and reliability.  The search had begun for accurate and 
inexpensive methods to ascertain the two most critical 
aspects of battery health: existing capacity and remaining 
service life.  Understandably, the battery end user would 
like to squeeze every last penny from the units already in 
service [16].   
 

To add to the end user’s plight, the industry is 
economizing on labor and material budgets to the point 
where insufficient resources remain for battery 
maintenance and/or record keeping.  As a result the 
necessary battery service records are never established. 
This leaves end users exposed by the battery manufacturers 
who can do nothing to support their warranties due to the 
fact that the end user can not produce the required warranty 
records to claim their warranty credits. 
 

Flooded cell technology has been around for more 
than 100 years with excellent repeatability in 
manufacturing processes to ensure consistent product to 
end users.  Most end users do not have problems with 
managing their battery assets when it comes to flooded 
products, due to their predictable results based on visual 
inspection and standard aging over time.  Most 20 year 
class flooded end users will replace these products at 12 to 
18 years, simply based on age without any type of testing!    
In this paper, equations are introduced to assist flooded 
users in determining their capacity and remaining life. 
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II. CAPACITY PREDICTION 
 

A comprehensive, non-invasive model for predicting 
battery capacity is possible provided the end users follow 
the battery manufacturer’s warranty requirements for 
maintenance records and establish baseline readings on all 
cells/units placed into field service.   
 

There are a number of models that have been 
developed, but the issue is extremely complex; a myriad of 
variables exist, the technology is constantly evolving, and 
there are multiple failure modes to consider.  Statistically, 
it would be expected that combining unique indices will 
increase the confidence of the predictions.   
 

A consolidated battery “fuel gauge” approach is not 
a new idea, but perhaps the timing is now right to draw on 
the substantial research results which have been obtained 
industry-wide.  It is easy to remain apprehensive about 
quantifying results, but to be truly valuable to the battery 
user, both the capacity prediction and associated 
uncertainty must be known [16].   
 

Universal Solutions, Inc. (USI) introduced at Intelec 
2002 in Montreal one of the first “Fuel Gauge Database 
Warehouse systems” utilizing the capacity predicting 
model.  As seen in Model A, this model yields % of battery 
capacity vs. % of baseline conductance without performing 
invasive discharge testing.    
 

In order to increase the confidence to predict 
capacity and remaining life, plus help end users administer 
their VRLA and flooded cell/unit warranties, additional 
equations must be introduced.  The equations should be 
set-up into “SIS Test Group” Models, “Control Group” 
Models and “Feedback Group” Models. 
 

The first group called “System In Service (SIS) Test 
Group” must yield % of capacity and % of remaining life 
without invasive testing.  Invasive testing requires 
performing a discharge or coup de fouet on the battery 
string.  The confidence of the prediction coming from this 
group should never be less than 80% accurate. 

 
 
 
 
 
 
 
 
 
 
 
 
 

SYSTEM IN SERVICE (SIS) TEST GROUP 
V
R
L
A 

FLOODED Item Parameters Invasive
? Model 

Model ID 

3.1 Ohmic vs. 
Capacity No Yes A A 

3.2 Ohmic vs. 
Remaining Life No Yes B C 

3.3 Temperature vs. 
Capacity No Yes D D 

3.4 Temperature vs. 
Remaining Life No Yes E F 

3.5 Float Voltage 
vs. Capacity No No N/A 

3.6 
Float Voltage 
vs. Remaining 

Life 
No Yes G H 

3.7 Float Current 
vs. Capacity No Yes I I 

3.8 
Float Current 
vs. Remaining 

Life 
No Yes J K 

 
The second group called “Control Group” must 

yield % of capacity and % of remaining life with invasive 
testing.  The results from the control group will then be 
compared to the results from the test group to determine 
the exact accuracy of the test group models.  The 
confidence of the prediction coming from this group 
should never be less than 100% accurate. 

 
 

CONTROL GROUP 
V
R
L
A 

FLOODED Item Parameters Invasive
? Model 

Model ID 

4.1 
% Time 

Discharge vs. 
Capacity 

Yes Yes L L 

4.2 
% of Trough 

[Coup de Fouet] 
Voltage vs. 

Capacity 

Yes Yes M M 

4.3 
% of MFG 
Cycles  vs. 

Remaining Life 
Yes Yes N O 

 
The final group called “Feedback Group” will 

provide feedback on applied overhead for these products.  
In order to start a battery prediction database system it 
becomes necessary to provide real-time results daily with 
or without data being entered daily.  The following 
parameters are provided to give real-time prediction 
models based on historic results.  These equations allow 
the database to update all information at the time of look 
up, which can include warranty dollars available if failed at 
time of look up.  Also calculated would be the expected 
capacity in the event of an outage and how long until the 
end user needs to budget for the product’s replacement.  
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This group will constantly change due to the feedback 
from larger sample sizes and improvements in technology. 
 

FEEDBACK GROUP 
V
R
L
A 

FLOODED Item Paramete
rs 

Invasive
? Model 

Model ID 

5.1 % Capacity 
vs. Life No Yes P Q 

5.2 
% 

Remaining 
Life vs. Life 

No Yes R S 

 
III. SYSTEM IN SERVICE (SIS) TEST GROUP 

 
3.1 Ohmic Measurements and Capacity 
 

Perhaps the most robust correlation with capacity 
has been demonstrated with the ohmic measurements of 
conductance, impedance, and resistance.  As a battery ages, 
degradation in the internal plates, grids, and connections 
results in decreased conductance (increased resistance and 
impedance)[16].  This effect has been studied extensively 
and a strong linear correlation with ohmic measurements 
and cell capacity is well established [3][7][10][13][16].  
Model A depicts typical behavior of a VRLA cell, 
examining conductance in particular due to its relative ease 
of measurement for the battery user. 
 

FLOODED & VRLA Behavior 

y = 0.69x + 38.3
R2 = 0.9981
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Model A 

SIS Test Group – Non-Invasive - OHMIC MEASUREMENTS 
%  Baseline Conductance vs. % Capacity Model - Any Design 

 
While the data speak volumes for the obvious linear 

correlation of capacity and conductance, it is the quality of 
this correlation that has sparked the most controversy.  The 
high data scatter for higher capacity cells begs the question 
of how precisely capacity may be predicted, if at all, using 
this measure alone.  It is with this in mind that a further 
look into the very nature of the correlation between 
capacity and conductance is required.  For conductance to 
be one of a combined set of measures used to predict 
capacity, the uncertainty of resulting predictions must be 

quantified to understand whether the confidence is 
palatable to the battery user.  
 

The biggest limitation of % Baseline Conductance 
vs. % Capacity Model is the majority of the end users who 
installed these 20 year class  VRLA cells/units 2 to 5 years 
ago did  not measure and collect baseline ohmic 
measurements when the cells were originally installed.  
This model deficiency may be solved with a baseline 
conductance/impedance value from the cells/units 
manufacturer if available.  At this writing, the majority of  
the manufacturers of the 20 year class VRLA products do 
not publish a baseline impedance/conductance 
measurement in their specifications or procedures, which 
makes accurate capacity prediction difficult to determine 
without baseline measurements.  Note:  This model 
requires either conductance or impedance measurements to 
always be collected in the same ohmic units and if possible 
with the same test set during the life of those cells/units. 
 
3.2   Ohmic Measurements and Remaining Life 
 

Ohmic measurements are very good indicators of 
battery remaining life due to the fact that as the battery 
ages naturally in service the internal resistance is always 
going up because of the internal corrosion associated with 
Lead Acid Battery technology.  As a result the Model B 
depicts VRLA behavior in 20 year designs and Model C 
depicts flooded behavior in 20 year designs.  The need for 
two equations for this parameter is due to the difference in 
Design Life vs. Actual Life in VRLA Technology. The 
limitations of Model B and Model C include Internal Short 
Circuits and difficult to determine State of Charge 
 
 

VRLA Behavior [20 Year Design]

y = 0.0017x2 + 0.2326x - 0.4571
R2 = 0.9952
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Model B 

SIS Test Group – Non-Invasive - OHMIC MEASUREMENTS 
%  Baseline Conductance vs. % Remaining Life Model – 20 Year VRLA 
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FLOODED Behavior [20 Year Design]

y = x
R2 = 1
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Model C 

SIS Test Group – Non-Invasive - OHMIC MEASUREMENTS 
%  Baseline Conductance vs. % Remaining Life Model - 20 Year Flooded  
 
 
3.3 Temperature and Capacity 
 

Temperature is a critical parameter of battery 
performance.  A service temperature increase accelerates 
the chemical reaction within the cell, increases the 
available capacity, but ultimately shortens the life [7].  
Unfortunately there appears to be little indication that 
temperature alone correlates significantly with battery 
capacity.  Temperature changes certainly may be a 
precursor to a problem, but the incorporation of other 
indices must be combined to verify a battery fault [8].  
While temperature may not be an effective indicator of 
capacity it is an essential quantity to consider when 
forecasting remaining battery life.  Model D depicts 
Flooded and VRLA behavior. The measurement of 
temperature at a single point in time limits the ability of 
Model D to tell the entire story.  End users need to evaluate 
average operating temperature to keep their warranty 
viable. 
 
 

FLOODED & VRLA Behavior

y = 0.5459x + 57.657
R2 = 0.9927
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Model D 

SIS Test Group – Non-Invasive – TEMPERATURE MEASUREMENTS 
%  Baseline Conductance vs. % Capacity Model – All Designs 

 
 

3.4   Temperature  and Remaining Life 
 

Temperature and Battery life is well documented by 
the majority of battery manufacturers.  Typically for every 
15°F above 77°F, the battery’s expected life is reduced by 
50%.  The majority of the environments where flooded 

cells are utilized are normally in an HVAC protected room.  
However, VRLA products, because of the appeal of their 
small footprint application, are installed wherever they fit 
regardless of temperature considerations. 
 

The relationship for VRLA Behavior in Model E is 
different from Flooded Behavior in Model F for 
Temperature due to the unrealistic life expectations for 
VRLA products.  As a result the curve never shows greater 
than 50% of advertised design life. 
  

VRLA Behavior [20 Year Designs]

y = -0.0076x2 + 0.48x + 44.442
R2 = 0.9706
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Model E 

SIS Test Group – Non-Invasive – TEMPERATURE MEASUREMENTS 
Temperature vs. % Remaining Life Model – 20 Year VRLA Designs 

 
FLOODED Behavior 

y = -0.019x2 + 1.2x + 111.1
R2 = 0.9706

0
20
40
60
80

100
120
140

0 20 40 60 80 100 120

Operating Temperature [F]

%
 o

f R
em

ai
ni

ng
 L

ife

 
Model F 

SIS Test Group – Non-Invasive – TEMPERATURE MEASUREMENTS 
Temperature vs. % Remaining Life Model – 20 Year Flooded 

 
3.5 Float Voltage and Capacity 
 

Float voltage is a measure that has received considerable 
attention.  However, many studies have shown that it has very 
little ability to accurately predict battery capacity 
[5][8][9][10].   No relationship is presented to define these 
parameters for float voltage vs. capacity. 
 
3.6      Float Voltage and Remaining Life 
 

Float voltage is a measurement that the battery 
manufacturers require to collect on any warranty claims.  The 
reason for this parameter to be collected is that keeping a 
string of cells at the incorrect float voltage can have 
significant impact of remaining life.  Setting the float voltage 
too low can cause sulfation to occur on the plates.  If 

35-2

664



sulfation is not treated in less than 6 months, the battery will 
not be able to recover to 100% health due to the sulfate acting 
as an insulator between the negative and positive plates.   
 

Setting the float voltage too high can cause excessive 
float current into the string which can prematurely age the 
cells due to increased temperature and the current being 
converted directly into hydrogen/water loss in the electrolyte.  
This condition, if not corrected immediately, may cause 
thermal runaway because the voltage necessary to properly 
float a cell decreases as the operating temperature increases.   
 

Since the advertised design life for VRLA is not true, 
two relationships must be presented to define this parameter.   
Model G depicts VRLA and Model H depicts flooded cell 
technology.  Limitations on Model G and Model H include 
maintaining consistent float voltage throughout the life of the 
product and product selection.  Battery manufacturers’ 
processes vary and consistent float voltage throughout a 
string of cells is very difficult to obtain without a tank formed 
product. 
 
 

VRLA Behavior [20 Year Design]

y = -303.96x2 + 1391.5x - 1555.1
R2 = 0.8536
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Model G 

SIS Test Group – Non-Invasive – FLOAT VOLTAGE MEASUREMENTS 
Float Voltage vs. % Remaining Life Model – VRLA Designs 

 
 

FLOODED Behavior [20 Year Design]

y = -448.48x2 + 2050.8x - 2250.7
R2 = 0.8112
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Model H 

SIS Test Group – Non-Invasive – FLOAT VOLTAGE MEASUREMENTS 
Float Voltage vs. % Remaining Life Model – Flooded Designs 

 
3.7 Float Current and Capacity 
 

Float, or trickle, current appears to have some 
correlation with capacity, but has limitations.  Since the 
same current passes through all cells in a given battery 
system, an inherent difficulty arises when trying to 
examine the significance of current at a cell level; the best 
and worst cells in a battery string will experience the same 
current flow.  A thorough study recently examined other 
logistical difficulties associated with utilizing float current 
readings.  Difficulties obtaining the measurement, 
appropriate concern thresholds, battery AH size, battery 
age, and state of charge must all be considered [8].  To 
assist with determining the correct float current vs. any size 
AH product, Model I for VRLA and flooded is introduced 
to assist with defining this parameter. 
 

FLOODED & VRLA Behavior 

y = 1.2309x - 23.095
R2 = 1
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Model I 

SIS Test Group – Non-Invasive – FLOAT CURRENT MEASUREMENTS 
%  Baseline Float Current vs. % Capacity Model – All Designs 

 
3.8  Float Current and Remaining Life 
 

Float current with respect to remaining life has very 
useful characteristics.  Typically at the end of life for both 
VRLA – Model J – and flooded – Model K products, they 
will demand a much higher current to maintain float as 
compared to first day in service.  This is due primarily to the 
internal resistance increasing; in order to properly float the 
cells/units, a higher current is required at end of life.  This 
parameter is also very helpful for finding early thermal 
runaway candidates before they self-destruct while in service.   
 

Typically when a VRLA battery is at end of life 
cycle, all the current from the power plant is going to increase 
cell temperature with limited current available to service the 
load.  Current is being converted into hydrogen gas which 
causes the internal specific gravity of the cells to increase due 
to less water in the electrolyte. Differentiating cell types and 
the state of charge limits Model J and Model K from 
developing one standardized equation for all operating 
conditions. 
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VRLA Behavior [20 Year Design]

y = 0.4924x - 9.2379
R2 = 1
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Model J 

SIS Test Group – Non-Invasive – FLOAT CURRENT MEASUREMENTS 
%  Baseline Float Amps vs. % Remaining Life Model – VRLA Designs 

 
 

FLOODED Behavior 

y = 1.2309x - 23.095
R2 = 1
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Model K 

SIS Test Group – Non-Invasive – FLOAT CURRENT MEASUREMENTS 
%  Baseline Float Amps vs. % Remaining Life Model – Flooded Designs 

 
 
 

IV. CONTROL GROUP 
 
4.1 Discharge Testing and Definition of Capacity 
 

The most accurate determination - Model L - of 
battery state of health is a discharge test because it 
evaluates how the unit performs under the very condition a 
back-up battery is designed to accommodate.  Derived 
from discharge results, capacity is defined as the ratio of 
the actual time a battery can sustain certain load conditions 
to the expected or designed time under the same 
conditions.  A well recognized criterion for battery 
degradation is 90% capacity and for failure/replacement is 
80% capacity [6].  Unfortunately, discharge testing is 
costly, time consuming, and most importantly invasive; 
removal of a battery system from the distribution plant it 
protects inevitably carries increased risk for service 
outages. 
 
 

FLOODED & VRLA Behavior [20 Year Design]
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Model L 

Control Group – Invasive – DISCHARGE MEASUREMENTS 
%  Discharge Time vs. % Capacity Model – All Designs 

 
4.2 Coup De Fouet and Capacity 
 

Encouraging correlations are found between 
capacity and the initial - Model M - highly transient 
voltage behavior manifested upon application of a load; 
this phenomenon is more commonly referred to as coup de 
fouet.  While measurement of this parameter still requires 
invasive discharge activity, the time required on discharge 
to obtain the information is usually on the order of a few 
minutes rather than a few hours required for a traditional 
discharge test.  Studies have shown reasonably strong 
linear correlations with either trough voltage or subsequent 
plateau voltage to capacity.  Typically, a lower voltage 
corresponds to lower battery capacity.  There are, however, 
significant contributions to the results from external 
operating conditions which detract from knowledge of the 
condition of the battery itself.  Discharge rate, prior time 
on float charge, and float voltage all have an influence on 
the results.  Some preliminary correction factors have been 
developed to minimize the effect of these external 
operating conditions in order to gain a true depiction of the 
performance of the cell.  However, these correction models 
are still preliminary and under development [11].   
 

FLOODED & VRLA Behavior [20 Year Life]

y = 840.87Ln(x) - 3768.6
R2 = 0.9842
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Model M 

Control Group - Invasive – INITIAL DISCHARGE MEASUREMENTS 
%  Baseline Trough Voltage vs. % Capacity Model – All Designs 
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4.3     Manufacturer’s Cycles vs. Remaining Life 
 

Cycles consumed during life can be a very good indication 
of remaining life provided that you can track Depth of 
Discharge [DOD].  While many power plants possess cycle 
counters not many provide a depth of discharge correlation 
between # of cycles and remaining life.  If the actual # of 
discharges and DOD were known in each event, the 
remaining life would be very easy to predict.  However, in 
the field the DOD is always different for each service outage 
event.  As a result a relationship as depicted in Model N and 
Model O are required to normalize this relationship. 

 
VRLA Behavior [20 Year Design]

y = -0.4509x + 43.4
R2 = 0.9841
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Model N 

Control Group – Invasive – CYCLE MEASUREMENTS 
%  MFG Published Cycles vs. % Remaining Life Model – VRLA Designs 

FLOODED Behavior [20 Year Design]

y = -x + 110
R2 = 1
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Model O 

Control Group – Invasive – CYCLE MEASUREMENTS 
%  MFG Published Cycles vs. % Remaining Life Model – Flooded Designs 

 
 

V.     FEEDBACK GROUP 
 
5.1     Design Life and Capacity 
 

While Actual Design Lives for 20 year class VRLA 
products have been well documented not to meet published 
design lives, the problem still exists how to get up to date 
capacity prediction without the presence of any new data 
points or remote monitoring.  The Design life vs. % Capacity 
parameter is outlined in Model P for VRLA and Model Q for 
flooded cells. The requirement to have a separate relationship 

for flooded compared to VRLA is due to the fact that the 
VRLA do not meet 50% of design life. Model P and Model 
Q are not effective at determining poor capacity in early 
stages of life 
 

 
VRLA Behavior [20 Year Design] 

y = -0.07x2 + 2.089x + 93.819
R2 = 0.7839
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Model P 

Feedback Group – Non-Invasive – DESIGN LIFE MEASUREMENTS 
%  Life vs. % Capacity Model – VRLA Designs 

 
 

FLOODED Behavior [20 Year Design]

y = -0.0059x2 + 0.347x + 98.873
R2 = 0.7621
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Model Q 

Feedback Group – Non-Invasive – DESIGN LIFE MEASUREMENTS 
%  Life vs. % Capacity Model – Flooded Designs 

 
5.2 Design Life and Actual Remaining Life 
 

The last parameter to be introduced is the design life 
vs. remaining life.  Model R depicts the VRLA behavior 
and Model S depicts the flooded behavior with respect to 
remaining life.  Model R and Model S are not effective at 
determining poor remaining life in early stages of a 
product’s history. 
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VRLA Behavior [20 Year Class]

y = -0.8076x + 67.62
R2 = 0.6974
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Model R 

Feedback Group – Non-Invasive – DESIGN LIFE MEASUREMENTS 
%  MFG Design Life vs. % Remaining Life Model – VRLA Designs 

 
FLOODED Behavior [20 Year Class]

y = -x + 100
R2 = 1
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Model S 

Feedback Group – Non-Invasive – DESIGN LIFE MEASUREMENTS 
%  MFG Design Life vs. % Capacity Model – Flooded Designs 

 
VI. TEST METHODS AND SAMPLE DESCRIPTION 

 
To further develop and test a functional model for 

capacity and remaining life prediction, a sample of VRLA 
AGM battery strings currently in operation in various 
temperature controlled communications centers was 
selected.  The sample consists of four 1200 AH, -48V 
strings (96 cells) with a service life of 2 years that had 
accurately collected all “TEST GROUP” parameters 
including baseline measurements from ready for service 
date which included float voltage, float current, ohmic 
measurements, temperature and baseline data points for the 
correct battery type.  These tested cells were in service for 
2.5 years.  The VRLA battery strings are twenty year class 
products and represent two different manufacturers. 
 

The cells were left to float without any further 
testing for more than 2.5 years.  Prior to discharge testing 
all strings had been on float for a minimum of 72 hours, 
intercell resistance readings were taken and connections 
checked for tightness, float voltage was recorded at the cell 
and string level, and float current was recorded.  
Additionally, conductance readings were taken while on 
float since state of charge significantly affects readings. 
The same Midtronics Micro-Celltron Conductance Tester 

was used for each measurement, being careful to ensure the 
probes had direct contact with the cell post lead.  Each 
string was then placed on open circuit and constant current 
discharge testing was conducted in accordance with IEEE 
1188 guidelines [6].  The temperature corrected 3, 4, or 8 
hour discharge rate to end voltages of either 1.75 or 1.86 
volts per cell was used.  Computerized data logging 
equipment was used to record current and voltage readings 
every 2 seconds for the first few minutes, every 10 minutes 
for the majority of the test, and every 1 minute after the 
voltages began falling quickly.  Cell capacity was 
calculated based on test performance. 
  

VII. TEST RESULTS AND CORRELATION MODEL 
 
7.1 Capacity Prediction Model Using Conductance 

Conductance is well accepted as an excellent tool for 
trending the capacity of a cell over time by comparing 
previous readings.  To expand beyond trending and address 
capacity prediction raises questions of effectiveness.  
Because the test group includes different products with 
different nominal conductance values, measurements were 
normalized using a baseline to facilitate comparison of the 
results.  For the purpose of this study, the Midtronics 
published conductance was used as the baseline, but there 
are a variety of approaches for obtaining such a value when 
an average value was not established at the start of service 
life [13].  A conductance decline of 20-30% from baseline 
value is typically considered cause for concern and an 
indicator that cell performance may be declining quickly 
[6].  In recognition that most battery users are concerned 
about capacity in the acceptable range of performance, 
approximately 75-105%, a prediction model will be 
developed using test data from that same range.   
 
7.2 Prediction Model Interpretation 
 

Figure 1 depicts the results from the Test Data yield 
the following results compared to the results of the control 
group which had an invasive IEEE discharge.  The 
correlation between the test group and the control group is 
more than 90% accurate. 
 

RESULTS FROM TESTING THE MODELS 
Parameter SIS Test 

Group 
Control 
Group 

Feedback 
Group 

String A 90% 
Capacity 

98% Capacity 99% 
Capacity 

String B 92% 
Capacity 

100% 
Capacity 

99% 
Capacity 

String C 69% 
Capacity 

75% Capacity 99% 
Capacity 

String D 98% 
Capacity 

99% Capacity 99% 
Capacity 

Figure 1 – Test Group vs. Control Group 
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VIII. CONCLUSIONS 
 
1.  All models may be added to, removed and modified as 
more data becomes available. 
 
2. Accuracy of Test Group is over 90% compared to 
Control Group.  This allows end users to gain excellent 
prediction models with only manufacturer’s maintenance 
records required and no invasive discharge testing.  
 
3. Customers who want 99.999% reliability from their 
networks must look at the weakest link in their network.  
Battery maintenance and record collection is a low priority 
to most end users, yet they all are trying to differentiate 
their services from each other and the only difference in 
most cases is the reliability of their batteries.   
 
4. The “FEEDBACK GROUP” will always be a dynamic 
set of parameters due to improvements in battery 
technology and results from larger sample sizes of data 
sets.    
 
5.  End users need to find a way to maintain better records 
to ensure they get the most for their asset dollar.  A 
database system which collects the “SIS TEST GROUP” in 
required intervals will satisfy most major manufacturers’ 
requirements for warranty documentation. 
 
6. A limitation to battery prediction is not properly 
measuring, recording and archiving baseline measurements 
at the time of ‘ready for service’ to compare against future 
battery measurements.  The battery manufacturers need to 
start publishing ohmic baseline measurements in 
conductance and impedance units with an acceptable +/- 
range. 
 
7.  The approach used to develop the capacity prediction 
model based upon “SIS TEST GROUP” measurements is 
applicable to other linearly related measurements.  A 
model specific to a battery type, battery age, or any desired 
distinguishing feature for that matter, may be developed by 
choosing the test group appropriately. 
 
8.  Accurate and consistent data collection of the “SIS 
TEST GROUP” in required intervals is critical to compare 
with baseline values to obtain valid predictions. 
 
9.  As a large size of data is collected for the parameters 
listed above, new and/or revised models will emerge to 
provide higher accuracy of predictions. 
 
10. The weight assigned to each model when more than 
one model’s measurements are available will vary 
depending on which models are available at time of 
prediction. 
 

IX. RECOMMENDATIONS FOR FUTURE WORK 
 
1. Expand the capacity and conductance correlation 

model to include more data and a slightly broader 
range of concentration.  Results drawing on a broader 
sample will help determine if prediction uncertainty 
may be significantly reduced. 

 
2. Work with test set manufacturers to develop 

equipment that will be able to capture all data in the 
field and allow easy download into a database system 
for record collection management. 

 
3. Work with ALL battery manufacturers to accept a 

standardized web-enabled database system with all 
required data parameters to satisfy manufacturers’ 
requirements for warranty documentation. 

 
4. Develop quantifiable battery capacity prediction 

models based upon other non-invasive measurements.  
Consolidate individual models into one comprehensive 
model. 

 
5. Approach battery remaining life prediction models in a 

similar manner to that proposed for capacity 
prediction.  A complete battery state of health 
prediction will need to consider both elements. 

 
6. Ultimately, results from a battery state of health 

prediction model could be incorporated into a 
monitoring algorithm to provide the battery user real 
time visibility of potential problems. 

 
7. Work with battery end users and manufacturers to  

start data warehousing their maintenance records in 
order to provide the most cost efficient solutions with 
respect to proactive management of warranty, cost to 
perform work, improving battery technology and most 
importantly reliability of the end user’s networks.  

 
8. Publish the weight equations for events when more 

than one model’s measurements are available at time 
of prediction. 
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